Chapter 4 Sums of Convolutions. 2019-20
[2 lectures]

Let f be an arithmetic function and write My(z) = > _, f(n). We are
interested in the cases when f is the convolution of functions g and h about
which we already know something of either My(z) or My (z).

4.1 Convolution Method, special case

Idea of special case If f =1xgso f(n)=>_,, g(d), then

Mi(@) =)= gld) =D gd) 1, (1)

n<x n<z dn d<z n<x
d|n

on interchanging the summations.

In the inner sum in (1) we have d|n so write n = md for some m € N and
the sum becomes

dm<x m<z/d
and thus "
M; (@)=Y g(d) | 5] (2)
d<x
Using
x x
3l =3+ow

we obtain the fundamental

M) = a3 2D +0<Z |g<d>\) . 3)

d<z d<z



4.2 Convolution I "7 g(d)/d converges absolutely

If f = 1xgand Y 7, g(d)/d converges absolutely then replace >, g(d)/d
in (3) by the series completed to infinity, >~ g(d)/d, and estimate the error

D 9(d)/d.

Lemma 4.1 Assume h is a decreasing non-negative integrable function for
which Y">° | h(n) converges. Then

> " h(n) < h(x) + / h h(t) dt.

n>x

Proof left as an exercise. We know from an earlier result that y - h(n)
converges if, and only if, floo h(t) dt converges. The same method of compar-

ing sums with integrals is used here,
Let N = [z + 1], the smallest integer > x. Then

> h(n) = > h(n)=h(N)+ Y h(n)

n>x n>N n>N+1
< h(N)+ Z / h(t)dt since h is decreasing
n>N4+1 Y1
< h(N)+ / h(t)dt since the integral converges
N
< h(m)-i—/ h(t) dt,

the last step following since, for the first term h is decreasing while for the
integral h > 0. [ |

For this Chapter the most frequent application of this, with h(t) = 1/t/,
is in

Example 4.2 For 6 >1

z:1<1+/oodZf 1+x1_9 <y 27
- < = B B v,
n? — af o 2 e—1 >

n>w z

As an example of the Convolution Method recall from Chapter 3 that ),
is the characteristic function of square-free numbers. Then
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Theorem 4.3

5 Qutn) = g+ 0.

n<x

Proof. In Chapter 3 we decomposed (3 as Qo = 1% 1, where uy (n) = p(m)
if n =m?, 0 otherwise. The Convolution Method as in (3) gives

> Qan) = mZ’“‘QT“‘”w(ng(dn)

n<lx d<z d<z

= 932@-1-0 Zm(m

d<z d<zx
d=m?2 d=m?2
- N
= |:U’ )

m2<g m2<zg

by the definition of .
In the error term here use |p(m)| < 1.

For the main term the series Y o, p(m)/m?* converges so we “complete”

the series over m? < z (i.e. m < \/x) to one over all positive integers, though
in doing so get an error of the sum over m > y/x. Thus

S Qoln) = OOMS;)_ M,SZ) ol S

n<w m=1 m>\/z m<x

We estimate the tail end using Example 4.2, 6 = 2, getting

> ”T(:;) < Z%«%

m>\/z m>\/z

Recall that the arithmetic function p was first observed as the coefficients of
the Dirichlet series for 1/((s), Res > 1, so

—pm) 1
Zmz _C)

m=1




Therefore

S =+ (5 +0( ) ) +0Wa),

n<zx

giving the required result. |

Definition 4.4 If
1
Y 3> 1)

n<x

exists we call this the Mean Value of f and denote it by M(f).

Thus 1 6
M(Q2) = @ - ﬁ’

which can be interpreted as saying that the proportion of square-free integers
is 6/7% or that the probability of picking a square-free integer is 6/

For another example where Y -, g(d)/d converges absolutely consider

Euler’s phi function ¢. Recall that ¢ = p* j so

om) = S ud) i (2) = Sty b e Ay Ay

d|n d|n d|n

This is used in the proof of

Example 4.5

Z@:xﬁﬂ—O(bgm).

Solution From (4)

d d
Z @ = Z Z % = & Z; 1 on interchanging summations

d
n<x n<z dn d<zx n
din



So, completing the first summation to infinity,

Z@ = < Mélgl) — ,uc(l;i)> + O(log )

n<lx

Note If f = 1 % g the condition that > ¢g(n)/n converges absolutely is a
measure that g is “small”, and so we could say that f differs from 1 by a
“small” perturbation g.

Aside we have seen the convolution method before, in the proof of Merten’s

results. There we started with the decomposition of the log function as
(=1x%A,ie.

logn = ZA(d) .

d|n

For then the convolution method gives, by (2),

Y logn = S A(d) [3] - x2¥+0<21\(d)> . (5)

nlx d<z d<z d<z

On the other hand, an application of Partial Summation, as seen in Chapter
2, gives

Zlogn:mlogm—m+()(logf1:). (6)

n<x

Combining and using Chebyshev’s result on the error term in (5), we
deduce Merten’s result
3 A e
y .

d<z



4.3 Convolution IT >, g(d)/d diverges

We now give an example of the use of (3) when f = 1% g and the series
Yoo, 9(d)/d diverges.

Our first example is to the divisor function d =1 % 1.

Theorem 4.6 For the divisor function we have

Zd(n) =zlogx + O(x).

n<x
Proof
T
M = =3[
n<z dn d<zx
1
= X Z C_Z + O (Z 1)
d<wx d<z
= zlogz+ O(x).
having used ., 1/d =logx + O(1). |

For our second example we recall the decomposition from the last Chapter
of 2¥ = 1% (@)s. In the application of the Convolution Method we will require
an estimate for >, Q2(d)/d. This will follow from Theorem 4.3,

1 1/2
Z@(n)zﬁ.rw(m/),

n<z

by partial summation. In general, let a,,n > 1, be a sequence of numbers,
and A(z) =) _, a,. Then start with

1 1 ( 1 1 ) 1 T dt
n r n z n U
Multiply by a,, and sum over n :

n 1 voodt
v - ;<Zan>+2/n s

n<z n<z n<z

_ %A(m) + [A(t) % (7)



In our present example this leads to

Corollary 4.7

Q2(d)_io .
g y —C(Q)lg +0(1).

Proof By (7)

Q2(d v dt
y el m(ZQ2<n>)+ / (Z@z(m)t—g

d<ux n<x n<t

by Theorem 4.3
1 1 1 vodt
= _1 — —_— — .
o+ g +olam) vol [ #m)

The integral here converges and so contributes an error of O(1), which dom-
inates all but the log term. Hence the stated result follows. |

| —

K|

The Convolution method now gives

Theorem 4.8

Z 2w — ﬁwlogw + O(x).

n<x

Proof Since 2 = 1 % ()3 we have by the Convolution Method, (3),

Z ) — g Z di(d) +0 <Z Qz(d))

n<lx d<z d<z

_ (ﬁ log = + 0(1)) +0(x)

by Theorem 4.7 on the main term and |Q2(d)| < 1 on the error. |



4.4 The square of the divisor function

Definition 4.9 If two arithmetic functions g and h satisfy

Y ogn)~ > h(n)

nlx n<lx

then g and h have the same average order.

Example 4.10 We have both

Z d(n) = zlogz + O(x)

n<x

from above and, from (6),

Zlogn =xlogx + O(x).

n<lx

Thus d has average order log.

You might then think this would mean that

Z d*(n) ~ Z log®n

n<x n<x

= / log?tdt + O (log2 x)
1

= xlog’r + O (zlogx), (8)
on integrating by parts. We will see later that this is FALSE.
Recall that in the last Section we showed that d* decomposes as
d?=1%1%1%1% .

Just as how, above, we went from a result on the summation of Q)5 (The-
orem 4.3) to a result on the summation of 2 = 1% Qs (Theorem 4.8), we can
go on to summations of g = 1%2% (in fact, g(n) = d(n?)) and then d* = 1xg.



We first introduce 1/n into the result of Theorem 4.8.

Corollary 4.11

2w(n) 1
— log? 1 :
Z - 202) og”z + O(log z)

n<lx

Proof left to student Partial Summation, as seen in (7), gives

() 1 @ dt
_ w(n) wn) | 2%
1 1 v 1 dt
- (= 41 il
:c(((Q)x oga:—l—O(ac))—l—/1 <C(2)t ogt—l—O(t)) 7
1 log?
= @ Og2x+0(logf17).

Theorem 4.12

Z d(n’) = 241(2)91:10g2 r+ O(xlogx).

n<x

Proof left to student Since d(n?) = (1 * 2°)(n) we have by the Convolution
Method, (3),

2w(d)
Zd,(nQ) = x 7 + 0 ZQ“(d)

n<wx d<z d<z

2w(d)
= ZEZ y + O(xlogx)

d<z

by Theorem 4.8 on the error term

=z (2C1(2) log®  + O(log 33)) + O(xlogz),

by Corollary 4.11 on the main term. [ |



We next introduce a factor of 1/n into this result.

Corollary 4.13

Z d(j) = 6(1(2) log® 2+ O(zlog” x) .

n<x

Proof left to student [ |

Finally we get our result for d2.

Theorem 4.14

Z d*(n) = 6C1(2)1: log’ z + O(zlog”z) .

n<x
Proof left to student. [ ]

This shows that the guess (8), based on the average order of d(n) being
logn, is wrong. So though d(n) is often small, i.e. d(p) = 2 for prime p,
it must often be large. For then, squaring a large value will ‘amplify’ its
contribution.

10



4.5 dj

In a different direction we can look at d3 = 1x1x1 = 1xd. The Convolution
Method gives

D ds(n) =z %m) + 0(2 d(m)>

n<x m<x m<x

= xz @ + O(zlogz),

m<x

by Theorem 4.6 in the error term. Partial Summation applied to Theorem

4.6 gives
d(s 1
Zﬂ = —log?z 4+ O(log ).
n 2

n<x

Combine to get

Theorem 4.15

Z dz(n) = %:1: log?z + O(xlogx).

n<lz

It can be shown by induction that

Z dy(n) = @ _1 1)!Jclogz_1 40 (rlog™ ). (9)

n<x

for all integers ¢ > 2.
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