Chapter 4 Sums of Convolutions.

2019-20 [2 lectures]

Let f be an arithmetic function and write $\mathcal{M}_f(x) = \sum_{n \leq x} f(n)$. We are interested in the cases when f is the convolution of functions g and h about which we already know something of either $\mathcal{M}_g(x)$ or $\mathcal{M}_h(x)$.

4.1 Convolution Method, special case

Idea of special case If f = 1 * g so $f(n) = \sum_{d|n} g(d)$, then

$$\mathcal{M}_f(x) = \sum_{n \le x} f(n) = \sum_{n \le x} \sum_{d|n} g(d) = \sum_{d \le x} g(d) \sum_{\substack{n \le x \\ d|n}} 1,\tag{1}$$

on interchanging the summations.

In the inner sum in (1) we have d|n so write n=md for some $m\in\mathbb{N}$ and the sum becomes

$$\sum_{dm \le x} 1 = \sum_{m \le x/d} 1 = \left[\frac{x}{d}\right].$$

and thus

$$\mathcal{M}_f(x) = \sum_{d \le x} g(d) \left[\frac{x}{d} \right]. \tag{2}$$

Using

$$\left[\frac{x}{d}\right] = \frac{x}{d} + O(1)$$

we obtain the fundamental

$$\mathcal{M}_f(x) = x \sum_{d \le x} \frac{g(d)}{d} + O\left(\sum_{d \le x} |g(d)|\right). \tag{3}$$

4.2 Convolution I $\sum_{d=1}^{\infty} g(d)/d$ converges absolutely

If f = 1*g and $\sum_{d=1}^{\infty} g(d)/d$ converges absolutely then replace $\sum_{d \leq x} g(d)/d$ in (3) by the series completed to infinity, $\sum_{d=1}^{\infty} g(d)/d$, and estimate the error $\sum_{d>x} g(d)/d$.

Lemma 4.1 Assume h is a decreasing non-negative integrable function for which $\sum_{n=1}^{\infty} h(n)$ converges. Then

$$\sum_{n>x} h(n) \le h(x) + \int_x^\infty h(t) \, dt.$$

Proof left as an exercise. We know from an earlier result that $\sum_{n=1}^{\infty} h(n)$ converges if, and only if, $\int_{1}^{\infty} h(t) dt$ converges. The same method of comparing sums with integrals is used here,

Let N = [x + 1], the smallest integer > x. Then

$$\sum_{n>x} h(n) = \sum_{n\geq N} h(n) = h(N) + \sum_{n\geq N+1} h(n)$$

$$\leq h(N) + \sum_{n\geq N+1} \int_{n-1}^{n} h(t) dt \text{ since } h \text{ is decreasing}$$

$$\leq h(N) + \int_{N}^{\infty} h(t) dt \text{ since the integral converges}$$

$$\leq h(x) + \int_{x}^{\infty} h(t) dt,$$

the last step following since, for the first term h is decreasing while for the integral $h \ge 0$.

For this Chapter the most frequent application of this, with $h(t) = 1/t^{\theta}$, is in

Example 4.2 For $\theta > 1$

$$\sum_{n>x} \frac{1}{n^{\theta}} \le \frac{1}{x^{\theta}} + \int_{x}^{\infty} \frac{dt}{t^{\theta}} = \frac{1}{x^{\theta}} + \frac{x^{1-\theta}}{\theta - 1} \ll_{\theta} x^{1-\theta}.$$

As an example of the Convolution Method recall from Chapter 3 that Q_2 is the characteristic function of square-free numbers. Then

Theorem 4.3

$$\sum_{n \le x} Q_2(n) = \frac{1}{\zeta(2)} x + O(x^{1/2}).$$

Proof. In Chapter 3 we decomposed Q_2 as $Q_2 = 1 * \mu_2$ where $\mu_2(n) = \mu(m)$ if $n = m^2$, 0 otherwise. The Convolution Method as in (3) gives

$$\begin{split} \sum_{n \leq x} Q_2(n) &= x \sum_{d \leq x} \frac{\mu_2(d)}{d} + O\left(\sum_{d \leq x} |\mu_2(d)|\right) \\ &= x \sum_{d \leq x} \frac{\mu(m)}{d} + O\left(\sum_{d \leq x} |\mu(m)|\right) \\ &= x \sum_{m^2 \leq x} \frac{\mu(m)}{m^2} + O\left(\sum_{m^2 \leq x} |\mu(m)|\right), \end{split}$$

by the definition of μ_2 .

In the error term here use $|\mu(m)| \leq 1$.

For the main term the series $\sum_{m=1}^{\infty} \mu(m)/m^2$ converges so we "complete" the series over $m^2 \leq x$ (i.e. $m \leq \sqrt{x}$) to one over **all** positive integers, though in doing so get an error of the sum over $m > \sqrt{x}$. Thus

$$\sum_{n \le x} Q_2(n) = x \left(\sum_{m=1}^{\infty} \frac{\mu(m)}{m^2} - \sum_{m > \sqrt{x}} \frac{\mu(m)}{m^2} \right) + O\left(\sum_{m \le \sqrt{x}} 1 \right).$$

We estimate the tail end using Example 4.2, $\theta = 2$, getting

$$\left| \sum_{m > \sqrt{x}} \frac{\mu(m)}{m^2} \right| \le \sum_{m > \sqrt{x}} \frac{1}{m^2} \ll \frac{1}{\sqrt{x}}.$$

Recall that the arithmetic function μ was first observed as the coefficients of the Dirichlet series for $1/\zeta(s)$, Re s > 1, so

$$\sum_{m=1}^{\infty} \frac{\mu(m)}{m^2} = \frac{1}{\zeta(2)}.$$

Therefore

$$\sum_{n \le x} Q_2(n) = x \left(\frac{1}{\zeta(2)} + O\left(\frac{1}{\sqrt{x}}\right) \right) + O\left(\sqrt{x}\right),$$

giving the required result.

Definition 4.4 If

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} f(n)$$

exists we call this the **Mean Value of** f and denote it by $\mathcal{M}(f)$.

Thus

$$\mathcal{M}(Q_2) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2},$$

which can be interpreted as saying that the proportion of square-free integers is $6/\pi^2$ or that the probability of picking a square-free integer is $6/\pi^2$.

For another example where $\sum_{d=1}^{\infty} g(d)/d$ converges absolutely consider Euler's phi function ϕ . Recall that $\phi = \mu * j$ so

$$\phi(n) = \sum_{d|n} \mu(d) j\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \frac{n}{d}, \quad \text{i.e.} \quad \frac{\phi(n)}{n} = \sum_{d|n} \frac{\mu(d)}{d}. \tag{4}$$

This is used in the proof of

Example 4.5

$$\sum_{n \le x} \frac{\phi(n)}{n} = x \frac{1}{\zeta(2)} + O(\log x).$$

Solution From (4)

$$\sum_{n \le x} \frac{\phi(n)}{n} = \sum_{n \le x} \sum_{d|n} \frac{\mu(d)}{d} = \sum_{d \le x} \frac{\mu(d)}{d} \sum_{\substack{n \le x \\ d|n}} 1 \quad \text{on interchanging summations}$$

$$= \sum_{d \le x} \frac{\mu(d)}{d} \left[\frac{x}{d} \right] = \sum_{d \le x} \frac{\mu(d)}{d} \left(\frac{x}{d} + O(1) \right)$$

$$= x \sum_{d \le x} \frac{\mu(d)}{d^2} + O\left(\sum_{d \le x} \frac{1}{d}\right)$$

So, completing the first summation to infinity,

$$\sum_{n \le x} \frac{\phi(n)}{n} = x \left(\sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} - \sum_{d>x} \frac{\mu(d)}{d^2} \right) + O(\log x)$$

$$= x \left(\frac{1}{\zeta(2)} + O\left(\frac{1}{x}\right) \right) + O(\log x)$$

$$= x \frac{1}{\zeta(2)} + O(\log x).$$

Note If f = 1 * g the condition that $\sum g(n)/n$ converges absolutely is a measure that g is "small", and so we could say that f differs from 1 by a "small" perturbation g.

Aside we have seen the convolution method before, in the proof of Merten's results. There we started with the decomposition of the log function as $\ell = 1 * \Lambda$, i.e.

$$\log n = \sum_{d|n} \Lambda(d) \,.$$

For then the convolution method gives, by (2),

$$\sum_{n \le x} \log n = \sum_{d \le x} \Lambda(d) \left[\frac{x}{d} \right] = x \sum_{d \le x} \frac{\Lambda(d)}{d} + O\left(\sum_{d \le x} \Lambda(d) \right). \tag{5}$$

On the other hand, an application of Partial Summation, as seen in Chapter 2, gives

$$\sum_{n \le x} \log n = x \log x - x + O(\log x). \tag{6}$$

Combining and using Chebyshev's result on the error term in (5), we deduce Merten's result

$$\sum_{d \le x} \frac{\Lambda(d)}{d} = \log x.$$

4.3 Convolution II $\sum_{d=1}^{\infty} g(d)/d$ diverges

We now give an example of the use of (3) when f = 1 * g and the series $\sum_{d=1}^{\infty} g(d)/d$ diverges.

Our first example is to the divisor function d = 1 * 1.

Theorem 4.6 For the divisor function we have

$$\sum_{n \le x} d(n) = x \log x + O(x).$$

Proof

$$\mathcal{M}_d(x) = \sum_{n \le x} \sum_{d|n} 1 = \sum_{d \le x} \left[\frac{x}{d} \right]$$
$$= x \sum_{d \le x} \frac{1}{d} + O\left(\sum_{d \le x} 1\right)$$
$$= x \log x + O(x).$$

having used $\sum_{d \le x} 1/d = \log x + O(1)$.

For our second example we recall the decomposition from the last Chapter of $2^{\omega} = 1 * Q_2$. In the application of the Convolution Method we will require an estimate for $\sum_{d \le x} Q_2(d)/d$. This will follow from Theorem 4.3,

$$\sum_{n \le x} Q_2(n) = \frac{1}{\zeta(2)} x + O(x^{1/2}),$$

by partial summation. In general, let $a_n, n \ge 1$, be a sequence of numbers, and $A(x) = \sum_{n \le x} a_n$. Then start with

$$\frac{1}{n} = \frac{1}{x} - \left(\frac{1}{x} - \frac{1}{n}\right) = \frac{1}{x} + \int_{n}^{x} \frac{dt}{t^{2}}.$$

Multiply by a_n and sum over n:

$$\sum_{n \le x} \frac{a_n}{n} = \frac{1}{x} \left(\sum_{n \le x} a_n \right) + \sum_{n \le x} \int_n^x a_n \frac{dt}{t^2}$$

$$= \frac{1}{x} A(x) + \int_1^x A(t) \frac{dt}{t^2}.$$
(7)

In our present example this leads to

Corollary 4.7

$$\sum_{d \le x} \frac{Q_2(d)}{d} = \frac{1}{\zeta(2)} \log x + O(1).$$

Proof By (7)

$$\sum_{d \le x} \frac{Q_2(d)}{d} = \frac{1}{x} \left(\sum_{n \le x} Q_2(n) \right) + \int_1^x \left(\sum_{n \le t} Q_2(n) \right) \frac{dt}{t^2}$$

$$= \frac{1}{x} \left(\frac{1}{\zeta(2)} x + O(x^{1/2}) \right) + \int_1^x \left(\frac{1}{\zeta(2)} t + O(t^{1/2}) \right) \frac{dt}{t^2}$$
by Theorem 4.3
$$= \frac{1}{\zeta(2)} \log x + \frac{1}{\zeta(2)} + O\left(\frac{1}{x^{1/2}} \right) + O\left(\int_1^x \frac{dt}{t^{3/2}} \right).$$

The integral here converges and so contributes an error of O(1), which dominates all but the log term. Hence the stated result follows.

The Convolution method now gives

Theorem 4.8

$$\sum_{n \le x} 2^{\omega(n)} = \frac{1}{\zeta(2)} x \log x + O(x).$$

Proof Since $2^{\omega} = 1 * Q_2$ we have by the Convolution Method, (3),

$$\sum_{n \le x} 2^{\omega(n)} = x \sum_{d \le x} \frac{Q_2(d)}{d} + O\left(\sum_{d \le x} Q_2(d)\right)$$
$$= x \left(\frac{1}{\zeta(2)} \log x + O(1)\right) + O(x)$$

by Theorem 4.7 on the main term and $|Q_2(d)| \leq 1$ on the error.

4.4 The square of the divisor function

Definition 4.9 If two arithmetic functions g and h satisfy

$$\sum_{n \le x} g(n) \sim \sum_{n \le x} h(n)$$

then g and h have the same average order.

Example 4.10 We have both

$$\sum_{n \le x} d(n) = x \log x + O(x)$$

from above and, from (6),

$$\sum_{n \le x} \log n = x \log x + O(x).$$

Thus d has average order log.

You might then think this would mean that

$$\sum_{n \le x} d^2(n) \sim \sum_{n \le x} \log^2 n$$

$$= \int_1^x \log^2 t dt + O\left(\log^2 x\right)$$

$$= x \log^2 x + O\left(x \log x\right), \tag{8}$$

on integrating by parts. We will see later that this is FALSE.

Recall that in the last Section we showed that d^2 decomposes as

$$d^2 = 1 * 1 * 1 * 1 * \mu_2.$$

Just as how, above, we went from a result on the summation of Q_2 (Theorem 4.3) to a result on the summation of $2^{\omega} = 1 * Q_2$ (Theorem 4.8), we can go on to summations of $g = 1 * 2^{\omega}$ (in fact, $g(n) = d(n^2)$) and then $d^2 = 1 * g$.

We first introduce 1/n into the result of Theorem 4.8.

Corollary 4.11

$$\sum_{n \le x} \frac{2^{\omega(n)}}{n} = \frac{1}{2\zeta(2)} \log^2 x + O(\log x).$$

Proof left to student Partial Summation, as seen in (7), gives

$$\sum_{n \le x} \frac{2^{\omega(n)}}{n} = \frac{1}{x} \left(\sum_{n \le x} 2^{\omega(n)} \right) + \int_{1}^{x} \left(\sum_{n \le t} 2^{\omega(n)} \right) \frac{dt}{t^{2}}$$

$$= \frac{1}{x} \left(\frac{1}{\zeta(2)} x \log x + O(x) \right) + \int_{1}^{x} \left(\frac{1}{\zeta(2)} t \log t + O(t) \right) \frac{dt}{t^{2}}$$

$$= \frac{1}{\zeta(2)} \frac{\log^{2} x}{2} + O(\log x).$$

Theorem 4.12

$$\sum_{n \le x} d(n^2) = \frac{1}{2\zeta(2)} x \log^2 x + O(x \log x).$$

Proof left to student Since $d(n^2) = (1 * 2^{\omega})(n)$ we have by the Convolution Method, (3),

$$\sum_{n \le x} d(n^2) = x \sum_{d \le x} \frac{2^{\omega(d)}}{d} + O\left(\sum_{d \le x} 2^{\omega(d)}\right)$$
$$= x \sum_{d \le x} \frac{2^{\omega(d)}}{d} + O(x \log x)$$

by Theorem 4.8 on the error term

$$= x \left(\frac{1}{2\zeta(2)} \log^2 x + O(\log x)\right) + O(x \log x),$$

by Corollary 4.11 on the main term.

We next introduce a factor of 1/n into this result.

Corollary 4.13

$$\sum_{n \le x} \frac{d(n^2)}{n} = \frac{1}{6\zeta(2)} \log^3 x + O(x \log^2 x).$$

Proof left to student

Finally we get our result for d^2 .

Theorem 4.14

$$\sum_{n \le x} d^2(n) = \frac{1}{6\zeta(2)} x \log^3 x + O(x \log^2 x).$$

Proof left to student.

This shows that the guess (8), based on the average order of d(n) being $\log n$, is wrong. So though d(n) is often small, i.e. d(p)=2 for prime p, it must often be large. For then, squaring a large value will 'amplify' its contribution.

$4.5 d_3$

In a different direction we can look at $d_3 = 1*1*1 = 1*d$. The Convolution Method gives

$$\sum_{n \le x} d_3(n) = x \sum_{m \le x} \frac{d(m)}{m} + O\left(\sum_{m \le x} d(m)\right)$$
$$= x \sum_{m \le x} \frac{d(m)}{m} + O(x \log x),$$

by Theorem 4.6 in the error term. Partial Summation applied to Theorem 4.6 gives

$$\sum_{n \le x} \frac{d(n)}{n} = \frac{1}{2} \log^2 x + O(\log x).$$

Combine to get

Theorem 4.15

$$\sum_{n \le x} d_3(n) = \frac{1}{2} x \log^2 x + O(x \log x).$$

It can be shown by induction that

$$\sum_{n \le x} d_{\ell}(n) = \frac{1}{(\ell - 1)!} x \log^{\ell - 1} x + O\left(x \log^{\ell - 2} x\right). \tag{9}$$

for all integers $\ell \geq 2$.